
James Fincannon
Glenn Research Center, Cleveland, Ohio

Radioisotope Reduction Using Solar 
Power for Outer Planetary Missions

NASA/TM—2008-215437

October 2008

AIAA–2008–5769



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

 
• CONTRACTOR REPORT. Scientifi c and 

technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 

papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question via the Internet to help@

sti.nasa.gov
 
• Fax your question to the NASA STI Help Desk 

at 301–621–0134
 
• Telephone the NASA STI Help Desk at
 301–621–0390
 
• Write to:

           NASA Center for AeroSpace Information (CASI)
           7115 Standard Drive
           Hanover, MD 21076–1320



James Fincannon
Glenn Research Center, Cleveland, Ohio

Radioisotope Reduction Using Solar 
Power for Outer Planetary Missions

NASA/TM—2008-215437

October 2008

AIAA–2008–5769

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
Sixth International Energy Conversion Engineering Conference (IECEC)
sponsored by the American Institute of Aeronautics and Astronautics
Cleveland, Ohio, July 28–30, 2008



Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 



NASA/TM—2008-215437 1

Radioisotope Reduction Using Solar Power for  
Outer Planetary Missions 

 
James Fincannon 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Radioisotope power systems have historically been (and still are) the power system of choice from a 

mass and size perspective for outer planetary missions. High demand for and limited availability of 
radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high 
efficiency solar power systems have the potential for use at low outer planetary temperatures and 
illumination levels. This paper documents the impacts of using solar power systems instead of 
radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the 
potential fuel savings of such an approach. 

I. Introduction 
Radioisotope power systems (RPS) have been used on past outer planetary space missions very 

successfully. The benefits of these power systems are clear; they have low mass and are very compact. 
The technology push to make such systems more efficient enhances their ability to perform more 
missions for a given amount of radioisotope fuel. If there were no limitations on the availability of the 
fuel for such power systems, then RPS would be the obvious choice for all future outer planetary 
missions. Unfortunately, radioisotope fuel production is limited and requires a very significant investment 
of resources to assure a substantial supply for use by space, academic, and commercial customers. It is 
possible to use large amounts of such fuel for lunar and Mars unmanned/manned rovers/mobile assets, 
manned bases, unmanned observation stations, as well as landers/rovers on other small 
bodies/moons/planets (e.g., Europa, Venus) and, of course, the typical outer planetary uses. In order to 
assure access to the outer planets and to conserve limited radioisotope fuel for missions that absolutely 
require it, it is important to assess the ability of solar power to partially, or perhaps completely, replace 
the power provided by RPS for some missions. 

II. Past Work 
Various spacecraft (Rosetta, Juno, INSIDE) demonstrate the feasibility of using solar power for outer 

planetary missions (i.e., at or beyond Jupiter). Past analyses (circa 1968) have shown the combination of 
solar with electric propulsion provided a feasible alternative for a mission to Jupiter (ref. 1) where solar 
power in Jupiter orbit was used instead of RPS. Other solar powered spacecraft at Jupiter or near its orbit 
include Rosetta (ref. 2) which has already launched and Juno (ref. 3) which is still in development. 
Rosetta is planned to reach 5.25 AU, which is approximately the distance of Jupiter, but will not enter 
orbit. Juno is planned to reach 5.5 AU and enter a highly elliptical Jupiter polar orbit at ~39 planetary 
radii permitting a greatly reduced operational period within the main radiation belts. Rosetta and Juno use 
traditional planar solar arrays, although Rosetta uses silicon solar cells and Juno is planning on using 
triple junction cells. The INSIDE spacecraft (ref. 4) for Jupiter operation was proposed to use triple 
junction lightweight solar arrays and low power operation (90 W) in an orbit to avoid the worse radiation 
belts. Solar arrays (a larger area) were also proposed for a version of the INSIDE spacecraft (ref. 5) for 
operation as a atmospheric probe deployment flyby vehicle to Saturn, again, using the excess solar power 
with electric propulsion early in the mission. For Cassini (ref. 6), a study was performed to justify the use 
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of radioisotope power by considering solar arrays. This option was not accepted mainly because the 
mission power level was high enough to require very large solar arrays. Also, because the traditional 
approach of planar solar array design at that time, the mass/size of the power system was considered 
prohibitive, which restricted the launch vehicle, and limited deployed maneuvering. Other concerns were 
the inclusion of solar array moving parts which could affect reliability and safety. Apart from solar arrays, 
another approach for deep space power has been proposed to use solar light-to-heat concentrators with 
engines (such as Stirling) (refs. 7 and 8). 

III. Analysis Methods 
Ideally, it would be desirable to devise complete set of useful missions for various outer planetary 

distances (from Jupiter to Uranus) in order to evaluate the net benefits of solar power (partially or 
completely) replacing radioisotope power. This would require knowledge of mission goals, realistic 
instrument sets/operational modes to achieve those goals, and power requirements of the remaining 
spacecraft subsystems. Launch vehicles, use of solar electric propulsion and/or gravity assists, and cost 
could be assessed. Essentially, this would be a complete, preliminary spacecraft design. Due to its 
complexity and the limited resources available, this approach was not taken. Rather, using a spreadsheet 
tool, a model was developed which allowed the mass of the power system to be estimated as a function of 
distance from the Sun. The heliocentric distances at which the power systems were sized for this paper 
were ~5 AU (Jupiter), ~10 AU (Saturn), and ~20 AU (Uranus). Various combinations of state-of-the-art 
and projected solar arrays and solar cells were used. The solar array types included Ultraflex (refs. 9 and 
10), Planar Squarerigger (ref. 9) and Stretched Lens Array Squarerigger (refs. 9, 11 to 14). The solar cell 
types included state-of-the-art (SOA) triple junction gallium arsenide cells and projected IMM (Inverted 
Metamorphic) cells.  

A critical aspect of this analysis is the solar cell efficiency under low-intensity, low-temperature 
(LILT) conditions. Various reports have documented testing of solar cells under these conditions (refs. 15 
to 19); however, they focused on a distance of 1 to 5 AU with most work focusing on silicon cells. Since 
the best SOA cells for these outer planetary missions were likely to be triple junction type, test data was 
acquired at NASA Glenn Research Center for such cells under a variety of solar intensities and 
temperatures (up to 22 AU) (refs 20 and 21). The effect of solar intensity and temperature was modeled 
based on this data. Projected cells were assumed to have an added 5 percent efficiency from SOA values. 
Although the SOA solar cell options assumed triple junction cell mass characteristics, and the projected 
solar cell options were based on the very thin IMM solar cell mass characteristics. Cell temperatures 
assumed for this paper were –134 °C (at Jupiter’s distance), –173 °C (at Saturn’s distance), and –202 °C 
(at Uranus’ distance). 

The duration at different distances from the Sun, as well as the total flight time, affect the power 
system degradation. These durations are functions of the mission design. The various mission design 
approaches include direct trajectory, (multiple) Earth and/or Venus gravity assist, and the use of chemical 
stages and/or solar electric propulsion (SEP) and radioisotope electric propulsion. For this paper, multiple 
Venus/Earth gravity assist times were assumed amounting to 2.5 yr with a SEP mission. Mission transit 
times after the gravity assist period was assumed to be based on 2 AU/yr. Mission duration after transit 
was assumed to be 2 yr (i.e., heliocentric space only). Because the solar array was sized to provide a 
specific power level near the end of its mission at a low intensity illumination, closer to the Sun, a much 
higher power level is provided. Either the excess power is unused (e.g., remains on solar array, the solar 
array off-pointed, or solar cells operated at poor efficiency using peak power tracking) or the power can 
be used for SEP. In any case, only a small amount of available power early in the mission is needed by 
the primary spacecraft bus.  

Degradation of power due to radiation, micrometeoroids, ultraviolet radiation, thermal cycling, 
contamination, cell mismatch, and radiation damage were assessed. Damage factors (other than from 
radiation) added up to 1.4 to 3.1 percent of the total degradation for the missions considered. Radiation 
damage ranged from 10 percent (interplanetary only) to 30 percent (Jupiter orbiting). Ultraviolet 



NASA/TM—2008-215437 3

darkening, micrometeoroid, thermal cycling, and contamination are all very small when averaged over the 
entire mission. Using gravity assists increases the amount of time at distances with higher ultraviolet 
radiation darkening and radiation resulting in higher degradations. For radiation, the degradation is 7 
percent for a direct interplanetary trajectory but using SEP with gravity assists the degradation is  
10 percent and using a chemical stage with gravity assists is increased by 12 percent. Off-pointing of the 
solar arrays or increasing the coverglass thickness may reduce these impacts. Temperature of the solar 
array can also increase greatly near Venus and drag/orbital debris may be a problem for close gravity 
assists. It is assumed that solar array off-pointing can minimize the impact of these effects. A higher 
voltage (>90 V) SEP-related degradation (not considered in this study) is the result of SEP induced local 
plasma around the spacecraft which can lead to large parasitic electron current collection by the solar 
array’s exposed solar cell conductors (typical for Ultraflex-type solar arrays with open solar cell back 
contacts). Various design measures, which add mass, can be taken to reduce the substantial current loss 
caused by this kind of degradation. 

Solar array areal densities were 1.59 kg/m2 (Ultraflex-SOA), 0.90 kg/m2 (Ultraflex-Projected), 2.08 
kg/m2 (Planar Squarerigger-SOA), 1.39 kg/m2 (Squarerigger-Projected), 0.85 kg/m2 (SLASR-SOA), and 
0.75 kg/m2 (SLASR-Projected). Each option assumed the minimal, 3 mil coverglass thickness, which is 
the mass optimum value for low radiation dosage missions (for the SLASR option and more radiation, 
thicker coverglasses may provide a lower mass system). The “SOA” and “Projected” terms apply mainly 
to solar cell type, both their efficiency and areal mass characteristics. For the “Projected” options, the 
areal mass savings of the solar cell design (IMM type) but not solar array structural reductions which 
result from lower mass solar cells because such estimates require detailed analysis. Ultraflex solar arrays 
are assumed to be scalable from 4 to 6 m in diameter for the “SOA,” and up to 8 m in diameter for the 
“Projected” application. Planar Squarerigger and SLASR solar arrays are based on 2.5- by 5-m bays (the 
fundamental solar array building block size, which have been tested on ground and are considered likely 
to be mass optimum). Bays can be connected to each other to build up a wing. It is assumed that other bay 
sizes may be possible depending on the mission.  

For the flyby-type of missions, energy storage was required for the launch energy needs (i.e., 2 hr  
at nominal power prior to solar array deployment) and for peak loads (orbiting spacecraft would likely 
require more energy storage). The battery was assumed to be a lithium ion type with 80 W-hr/kg,  
80 percent depth of discharge, and 90 percent energy storage charge/discharge efficiency. Since the 
mission was assumed to be a flyby-type (i.e., low radiation exposure and minimal eclipse operation), the 
depth of discharge was assumed to be valid for very low cycles of use (<10) and for mission phases such 
as launch/deployment, off-pointing periods, and gravity-assist eclipse periods, possibly at reduced power. 
Missions with significant and frequent eclipses due to the planet, rings, moons, may require lower battery 
depth of discharges, thus larger batteries.  

Harness, power management, gimbals, and energy storage masses were calculated separately. 
Gimbals were assumed to be two axis tracking and 840 W/kg (power level is the solar array power at 
beginning of mission). The solar array interface structure (including tie downs, secondary boom, and 
structure) was assumed to be 2910 W/kg (power level is the solar array power at beginning of mission). 
The solar array harness from gimbal to switching unit was assumed to be 1689 W/kg (power level is the 
solar array power at beginning of mission). These values were derived from Ultraflex designs from the 
Orion spacecraft. The other non-solar array spacecraft harness was assumed to be 25 percent of the 
electronics mass. The power distribution unit was assumed to be 40 W/kg (power level is the spacecraft 
bus power at end of mission). The peak power tracker/regulator unit and the battery charge/discharge unit 
were each assumed to be 40 W/kg (power level is the solar array power at the end of mission). These 
units were based on the Venus Express/Mars Express/Rosetta design adjusted to handle higher solar array 
voltages (ref. 22).  

Solar array (pointing, failed strings, blocking diodes, interconnect efficiency, solar array harness 
efficiency) and power system (harness losses, peak power tracker accuracy, regulator efficiency, power 
distribution unit efficiency, switchgear efficiency) losses accounted for a ~17 percent reduction in power. 
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Characteristics of the RPS assumed for this study was the Advanced Stirling Radioisotope Generator 
(ASRG) as cited in reference 23. This RPS was selected because it has the lowest mass and used the 
lowest amount of radioisotope fuel (~ 1 kg of plutonium-238 for one ASRG, i.e., 2 general purpose heat 
sources). The mass for the ASRG was assumed to be 23 kg. When determining the net mass for the RPS 
system in this analysis, a battery and a battery charge and discharge regulator for load leveling and peak 
power use was included as well as individualized harness and power distribution assemblies; an additional 
16 kg. Other masses that may be required include a stand-off mast and /or thermal heat shield to attach the 
RPS to in order to reduce heat rejection onto the spacecraft. Some projected technology advancements of 
the ASRG, not reflected in this study, are planned to increase the power and lower the mass (12 and  
–17 percent respectively). 

Concentrator, heat engine options were not considered in the study because of perceived pointing 
issues. 

The missions depicted in this paper’s results were for spacecraft at distances representing Jupiter, 
Saturn, and Uranus, essentially flyby missions. Missions requiring orbit insertion or rendezvous add 
complexity and mass. Reference 21, which documents other results using the model described in this 
paper, presents results of these kind of mission operations for Jupiter/Europa, Uranus, Saturn, and two 
Centaur-class asteroids. Depending on the orbit characteristics, the energy storage size may be significant. 
Orbit insertion may require off-pointing of a solar array for various reasons (e.g., to minimize dust 
impacts when passing through a ring, to point a thruster, to minimize structural loads on the solar arrays, 
or aim instruments) which may affect energy storage size. Shadowing due to rings or moon passes may 
also affect energy storage size. Recharge time, energy storage requirements, and operational requirements 
(e.g., powering down during shadows or payload operation) impact the size of the solar array. For orbiting 
spacecraft, the cell temperatures become a function of planetary and moon infrared/albedo heat 
contributions. Other effects of planetary orbiting include radiation degradation of solar cells as well as 
ionizing radiation on various electronics. The radiation in Jupiter, Saturn, and Uranus orbit is dramatically 
different, but requires the knowledge of orbit definition and mission duration to assess the impact.  

IV. Analysis Results 
Figures 1 and 2 illustrate the effect on mass and area of using solar power to replace a “unit” of RPS 

power to save radioisotope fuel. This is the solar power system that must be added to replace one ASRG 
RPS unit which uses ~1 kg of plutonium-238. Based on an assumed mission timeline and radioisotope 
fuel heat degradation, the power level of the ASRG RPS was assumed to be 135 W at 5 AU, 133 W at  
10 AU, and 128 W at 20 AU. For example, at Uranus (~20 AU), the power system mass must increase by 
541 kg (i.e., 580 kg added for the SOA Ultraflex solar power, battery, etc and 39 kg subtracted for the 
ASRG RPS, battery, charge-discharge unit, etc.). If the spacecraft power is only 128 W at 20AU, then this 
implies that it takes 541 kg of solar power mass to replace the entire RPS. If the power level is higher than 
specified (e.g., 128 W at 20 AU), then either multiples of mass and area impacts can be determined or 
hybrid combinations of the solar and RPS power systems be determined. Using better power system 
technology and lowering the user power level by improving the payload technology or changing its 
operational design (as discussed in the following section) can reduce the size of the solar power system 
although the proportional savings of radioisotope fuel remains the same. In other words, if the power level 
is halved, although the solar power system would be half its mass, the RPS would use half the 
radioisotope fuel, so such a lower fuel usage could be more acceptable, depending on fuel availability. 
The feasibility of spacecraft with very high power system masses (such as for Uranus distances) depends 
upon the launch vehicle, but such masses and areas certainly encourages the improvement of solar power 
system technology (as well as lowering power levels). 

Figure 3 shows how much various technology improvements can increase the power for a fixed mass 
for the location of a Saturn flyby. The mass of the solar power system is assumed to be equal to the 
ASRG RPS power system. Improving the cell and array technology have the potential to double the 
power output from the solar power system. 
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There are a number of typical uncertainties that are inherent in this level of analysis. The study 
assumed a best engineering estimate of the input data, but a more appropriate approach would be to assign 
probability ranges. These uncertainties can be grouped into four areas: mission, hardware modeling, 
environment, and projected technology uncertainty. Mission uncertainty includes orbit altitude, trip time 
and science mission duration, launch date, instrument suite, and instrument requirements. These factors 
affect how long a spacecraft is in a high radiation zone, spacecraft orientation/solar arrays tracking (use 
scanning platform or move spacecraft), length of eclipse period, power levels for insolation and eclipse, 
and the loading on solar arrays due to thruster firings. The data presented in this paper assumed the 
missions were outside a planetary radiation zone, with either no eclipse period or low power levels for 
eclipse. Hardware modeling uncertainty is a function of the simplified modeling method normally used in 
early sizing analyses for spacecraft power system hardware. This involves simplified scaling of a number 
of components including gimbals, structures, power management and control, and power distribution and 
harness. Also, long term, low temperature effects on solar cells has not been experimentally verified. 
Environment uncertainty includes knowledge of the radiation environment at outer planetary bodies (e.g., 
Uranus), effects of long duration, low temperature operation on harness/gimbals/other solar array 
hardware, radiation effects on insulators (dielectric loss/embedded charge) and the effect of long term 
contamination due to spacecraft outgassing or thruster deposits. Included in this area would be detailed 
thermal modeling of the spacecraft. RPS has significant waste heat that can be used to keep the spacecraft 
warm for the low temperatures of outer planetary space. Solar power systems would require a 
combination of low temperature subsystems (i.e., materials, electronics), radioisotope heater units, and/or 
electric heaters. Finally, the projected technology uncertainty depends upon funding levels and adaptation 
of technology in other areas. In this study, only solar array and solar cell technology improvements were 
considered but improvements may exist in the other areas such as low power and high efficiency 
electronics in all spacecraft systems and lighter structures. Nominal low temperature, low intensity 
behavior of projected cells (namely IMM cells) as well as radiation degradation may be significantly 
different from standard cells. 

V. Future Work 
This analysis may be improved by obtaining a realistic set of missions and sizing the entire spacecraft 

including all the subsystems. Mission design tied with useful, feasible instruments and payloads including 
launch vehicles and various propulsion concepts is essential in such an activity. 

A focusing on low power usage must be emphasized for outer planetary missions, regardless of power 
source. This includes duty-cycling power using hardware and using power efficient equipment in the 
payloads and spacecraft bus. Reference 24 discusses a spacecraft design for a Neptune/Triton mission 
which emphasizes and assesses low power components. It presents a peak spacecraft power of 37 W and 
standby power of 13 W. Although such potentially low operational power levels seem encouraging for 
spacecraft designs, a great deal depends upon what science data is to be collected, the type of instruments, 
and their power requirements. References 25 to 28 discuss advances to enable low power devices 
including those demonstrated on ST–5 and DS–1 (http://nmp-techval-reports.jpl.nasa.gov/ 
DS1/LPE_Integrated_Report.pdf). The Defense Advanced Research Projects Agency (DARPA) also has 
performed low technology readiness level work in the area of low energy usage electronics which have 
the potential for revolutionary advances in spacecraft electronics. These include “clockless logic” circuits 
(http://www.darpa.mil/ mto/programs/class/index.html) which are data driven and only consume power 
when doing useful work and “energy starved electronics” 
(http://www.darpa.mil/mto/programs/ese/index.html) which allow the operation of devices in the very 
low voltage regime below which circuit devices normally operate and which may result in “100 times 
improvement in energy per operation”. 
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Conclusion 
This paper has presented data illustrating the mass and area that must be accommodated in order to 

use solar power instead of radioisotope power. Although it is clear that RPS is the lowest mass and area 
solution, in order to enable missions that may be curtailed or eliminated due to lack of radioisotope fuel, it 
is necessary to investigate other options that have been enabled by lower mass solar arrays and high 
efficiency solar cells which have the ability to operate in low intensity, low temperature conditions.  
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Figure 1.—Mass increase due to solar power to replace one ASRG RPS unit. 

 
 
 

 
 

Figure 2.—Area increase due to solar power to replace one ASRG RPS unit. 
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Figure 3.—Equal mass comparison of one ASRG power system with 
various solar power system options based on array/cell power 
improvements through technology development at Saturn flyby location 
(note: one ASRG power system produces 133 W using ~1 kg of 
plutonium-238). 
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